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A THEORETICAL AND EXPERTMENTATL STUDY OF HYPERSONIC FLOW
OVER FLARED BODIES AT INCIDENCE

By John V. Rakich and Gene P. Menees
Ames Research Center

SUMMARY

The inviscid flow over flared bodies at angle of attack is investigated.
Experimental pressure distributions are presented for bodies with a hemispheri-
cal nose and with a conical nose. Data are shown for Mach numbers of 5.2, 7.&,
and 10.5 and for angles of attack of 0°, 5°, and 10°. The models are provided
with a means for removing the boundary layer upstream of the flare to eliminate
shock-induced separation.

A perturbation method is developed for the numerical calculation of the
flare shock conditions, and the resulting equations are incorporated into a
computer program based on the linearized characteristics method. Comparisons
are made with experiment and with other more approximate theories which have
been developed for flared bodies.

INTRODUCTION

Aircraft and spacecraft designers are often faced with the problem of
predicting the aerodynamic forces on bodies that have compression corners on
the surface. A particular example is the class of flare-stabilized entry
bodies made up of a cylinder followed by a conical frustum. If the flow
approaching the flare is locally supersonic, a shock wave is formed near the
corner between the cylinder and flare. This shock interacts with the boundary
layer on the cylinder ahead of the corner, and the boundary layer perturbs the
flow approaching the flare. Thus, calculation of the inviscld and boundary
layer flow is coupled, making the analysis of both more difficult. The embed-
ded shock can cause the boundary layer to separate, and can therefore have a
large effect on the inviscid flow. The aerodynamic stability at small angles
of attack is especially sensitive to thils interaction. Even the development
of uncoupled inviscid theories has been hindered by the fact that experimental
results have usually had various degrees of boundary-layer shock-wave
interaction.

Numerous attempts have been made to predict the inviscid flow over flared
bodies at incidence (see, e.g., refs. 1 to 5). These existing theories have
tended to be empirical and have consisted of patching together various simple
flows. While adequate for most preliminary design purposes, these theories
have some deficiencies which appear in comparisons with experiment (see ref. 2),
and it is not possible to determine whether the differences are due to approx-
imations in the theory or to viscous effects in the experiments. The present
paper therefore has a dual purpose. First, an attempt is made to apply exact



numerical methods to determine the perturbations to the flow over flared
bodies at incidence. Second, results of experiments are presented in which the

effects of boundary-layer interaction have been purposely suppressed by leaving
a small gap between the body and the flare through which the boundary layer can
escape. The resulting pressure distributions can then be compared directly

with inviscid theories and thereby i1llustrate any deficiencies of the theories.

Computer programs applicable to flared bodies at zero incidence have been
developed at Ames Research Center (ref. 6) and elsewhere. A program based on
the linearized characteristics method has also been used in references 7 and 8
to calculate the first-order effects of angle of attack for smocoth bodies. In
the present report the linearized characteristics method 1s extended and
gpplied to flows with embedded or secondary shocks. The results of sample cal-
culations are compared with experimental pressure distributions obtained from
the Ames 3.5-Foot Hypersonic Wind Tunnel. Also, force coefficients and centers
of pressure predicted by theory are compared with integrated experimental pres-
sures and with other theories.

SYMBOLS
a speed of sound
2
A reference area, E%—
Cp axial force coefficient (excluding viscous and base drag),
axial force

QA

Cy normal-force coefficient, normal force
d A

c fPicient. 2 Fo
D pressure coefficient, o
d diameter of cylindrical body segment
h enthalpy
Kp body curvature
Ky shock-wave curvature
Kp pressure gradient along a straight shock
Kg flow-angle gradient along a straight shock
M Mach number, %
P Ppressure

. pVZ
a dynamic pressure, 5=

2 A-2222



cPp

X, r,®

XJy}Z

€,m

radial distance to shock wave
blunt body nose radius

entropy

streamline coordinates (see fig. 1)
velocity component in x direction
velocity component in r direction
scalar magnitude of wvelocity vector

velocity vector

velocity component in circumferential direction (crossflow velocity)

distance along a shock wave

distance to center of pressure

cylindrical coordinates

rectangular coordinates

distance from center of spherical nose, X = x - Ry
angle of attack

M2 -1

specific heat ratio

0 for two-dimensional flow, 1 for axisymmetric flow

angle between shock wave and flow direction

flow angle measured from x axis in meridional plane (see fig.
tan”?t %

characteristic coordinates

density

shock-wave angle measured from x axis
crossflow angle (see fig. 1), sin~1 w/V

azimithal coordinate, cylindrical coordinates



Subscripts

B body boundary condition

d downstream shock conditions

S shock boundary condition

u upstream shock conditions

o] zerc-order variable from solution of zero incidence flow field
1 first-order perturbation variable, implies g derivative with

respect to o which is a function of x and r only

0 free-stream conditions
a derivative with respect to o
Superscripts

A,B, . . . 7points in the flow field
' coordinates fixed with respect to body axes

" coordinates fixed with respect to shock axes

THEORY

Linearized characteristics theory has been applied to a number of prob-
lems involving smooth body shapes (see, e.g., refs. 7 to 9). 1In this section
the method will be applied to bodies with a compression corner which develops
a shock embedded in a nomuniform flow field. The corner angle is restricted
only by the condition that the shock must be attached and the flow behind the
shock supersonic. The equations and boundary conditions are linearized with
respect to the angle of attack, a. Thus the method yields information about
the first-order changes of the flow field as a result of a small change in
angle of attack. It depends on the prior solution of the flow at zero inci-
dence and on prescribed initial conditions. In the present case the solutions
for zero incidence are obtained with the computer programs described in refer-
ences 6 and 10. Initial conditions for pointed bodies are obtained from cone
theory as described in reference 8. Initial conditions for spherically blunted
bodies, to which present applications are restricted, depend only on the axi-
symmetric solution which is calculated by the inverse method (ref. 10).

The linearized characteristics equations will be outlined briefly in the
following pages, and the boundary conditions for an embedded shock will be
derived. The reader who does not care to follow the details of the derivation
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may turn directly to the section on Calculation Procedure. One should, how-
ever, take note of equations (1) velow which define the notation used for the
perturbation variables. A sketch of the coordinate axes and flow direction
angles is presented in figure 1.

Perturbation Equations

The problem of calculating the perturbation flow field for a body with a
compression corner differs from that for a smooth body only in the details of
the embedded shock calculation. Therefore, before the embedded shock is dis-
cussed the equations used in references 7 and 8 for smooth bodies will be
listed. In the present form these equations apply to perfect or real gases in
thermodynamic equilibrium. The subscript O is used to identify a quantity
obtained from the zero angle-of-attack solution (a known quantity), and the
subscript 1 is used for the unknown perturbation variables defined by

; __1 (o
pr(x,r) = 57 Pulx,7,0) = 555 < )
01(x,r) = L (x,7,0) = L %0 > (1)
132, cos & T Tl cos & \ Do =0
_ 1 (%
Pa(x,x) = sin @ 9 (x,7,0) = sin @ <§a w0 )

and so on. One should note that the perturbation variables are independent of
the meridional angle, ®. Therefore the analysis can be made in any meridional
plane; the leeward plane of symmetry is chosen in the present case.

The basic perturbation equations, in terms of characteristic coordinates
E, n, are

Bo Opy 06,
poVoZ On * on =F-G (28)

BO apl _ 591
pOVO2 ot ot

=E -@G (2b)

where

P11 + 81 cos 0,

= Nor




Bo dPo apé} G 360

F = oot %A + 94) Sog (B + BBy ) * 11 \Sso Bo 553)
Bo 9Py 61 eo 0,

= MOpOVO2 li(A 91) Bso + (B + BOG ) al’l :\ MO BO an >

and

2 oh 3 (Qa oh 3 [(da Bo Vo
b e | 5P>p G <8p>p T A <Bo>p + Vollo Bo>p " 20,

i), o[, 5

Two additional equations give the gradients of the crossflow angle and entropy
perturbations along the zero angle-of-attack streamline, sq, which is the
third characteristic direction. These are

o, <$ 1 Opp sin 95) Dy
= - + —_—
I8 oVo? 98 r » I'£30V02 (3)
and
081 dSo
ggg = =61 aﬁg ()

The energy equation and the equation of state are needed to complete the system
of equations. In terms of the perturbation variables these equations take the

following form:
Energy
hy + VoVy = O (5)
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State

hy

1

o) L, (2n) . |
) )
a1 = <$%DLP1 + <§%>ppl

o8 o8
<ap>ppl N ap>ppl J

The partial derivatives in equations (6) can be written explicitly for a per-
fect gas but must be found numerically for a real gas as described in refer-

ence 8. One supplementary equation that is needed for the present development
is

~T

(6)

S1

It

w1 = VP2 (7)

which gives the familiar crossflow velocity perturbation in terms of the cross-
flow angle perturbation that appears in the previous equations.

The initial conditions must specify the perturbation variables along a
noncharacteristic line between the body and the shock in a supersonic flow
region. At the present time, initial conditions are available only for pointed
cones and spheres. In the present paper, application is made only to a spheri-

cally tipped body, and the perturbation varisbles are all zero on the starting
line in this case.

Boundary Conditions for Smooth Bodies

Although the equations given above are independent of the particular
choice of reference axes, their boundary conditions are not. These conditions
will vary depending on the choice of axes. In the present development the
boundary conditions are given in terms of wind axes. Thus at the body one has

o8 d0
(el)B=—l+(X_Rb)5—r—o.-r§ (8)
. das
(Sl)B =K+ [(x - Ry)eos 6o + r sin 8o EHQ (9)
where
0 for a spherical nose

(81) cone  Tor a pointed nose



At the bow shock the perturbation conditions are

ap 9P,
(p1)s = 0135 - Rz S (10a)
()_GQ‘_B_RB_DQ (10Db)
Pr/g = 91 g5 * dr
de 999 10c
(61)g = o1 ic Ri 57 ( )
VOO .
(cpl)S = ol ., - cos B0 + cot og sin 6o (11)

The two new perturbation parameters introduced in equations (10) and (11) are
the shock angular perturbation, ¢i, and radial perturbation, Ri. They are
related geometrically by the relation

dRy
a&x

The derivatives with respect to shock angle, o, can be obtained from the usual
shock equations, and are evaluated in appendix A.

= g, sec® O (12)

Equations (l) through (12) completely specify the perturbation problem
for smooth bodies. They apply also for cornered bodies except for the immedi-
ate vicinity of the embedded shock. At a corner with an attached shock the
term K in equation (9) will change, and all along the shock the jump condi-
tions given in equations (10) and (11) will be complicated by the nonuniform
upstream conditions. These generalized shock conditions are developed next.

Boundary Conditions for an Embedded

p=p(r) Shock

pP=p(r)

9=0(r) Shock wave for: Shock conditions for pi, P1, Oi1.-

V=V(r) =0 Consider first a point on the shock

4¢/¢¢¢’ some distance from the body and in the
leeward plane of symmetry. The upstream

///¢¢¢éﬂi°b conditions are nonuniform and the shock
A is displaced, as shown in sketch (a),

///,,/’ >0 g5 a result of pitching the body to

7
Ro angle of attack «. For the develop-
Bgﬁﬂ,gﬁ’gﬁégi;=<%-+Ao- ment of the perturbation shock condi-
tions, it is convenient to introduce g
derivative following the shock wave,
R that is, the rate of change of a quan-
tity with respect to coordinates fixed
with the shock wave. Thus the notation
D/Do  is used to indicate the deriva-
- =X tive
Sketch (a)

2\
N\

\




Dp _ 1im (PP - Po¥ (13)
Do, ~ 00 o 3
In terms of the original notation defined in equations (l), one may write,
making use of a double prime superscript '
n(x,r) = —L Dp(x,r,0) |
PL%,T) = o5 o Dat
1 Do(x,r,?)
1 — 21
01"(x,r) = 555 T (14)
" _ 1 Do(x,r,0)
o1"(x,7) = sin @ Da

7

The derivative D/Da can be written in a more suitable form by expanding flow
variables in a series in terms of the radial distance from point A. Using
the pressure as an example, one has

A
P = pt + 4R @9 + 0(4R%) (15)

The perturbation expansions, in terms of wind axes,

ot

AR

ot + ap1® + 0(c®)

(16)
GRlA + O(CLZ)

are now introduced in equation (15), and the result substituted into equation
(13). (Note that the subscripts 1 and o are synonymous here since the anal-
ysis is made in the plane & = O0.) Terms of order of are eliminated in the

limiting process, and there results

Dp Opo
D = Pt Ry <§r > (17)

where it is understood that all quantities are evaluated at point A. This
gives the first-order expansion of the shock derivative in terms of quantities
evaluated in wind axes. Since the present calculations are made in terms of
wind axes, the necessary shock conditions can now be easily formulated with
the use of equation (17). The equations giving the jump conditions across a
shock wave may be written generally as

pg = P(Pys pus Vs Gu)

Pgq o(eys eus Vus Gu) (18)

1

0 - Bu = 0(Pu, Pu, Vu, Gu)



where
by =0 -6y (19)

and the subscripts d and u refer to conditions downstream and upstream from
the shock wave, respectively. Differentiating equations (18) yields

Dog _dp DRy, 3p Doy  3p DVu  dp Dlu |

Do~ dp, Du  dp, Da OV, Do dt, Da

Dea  dp Dby , dp Doy . dp DVy |, 3p Dby
Do ~ Opy Do dpy Do OV, Do 3¢, Do ? (20)

DOy Doy 39 Dpu  dg Dou 3¢ DV g Du

Do " Dx  3p, Da  Opy Da OV D Oty Do

These equations contain a 4 x 3 matrix of partial derivatives with respect to
upstream conditions. Evaluation of these derivatives from equations (18)

is discussed in detail in appendix A. The presence in equations (20) of these
upstream derivatives is one essential difference between the embedded shock
conditions and equations (lO) for the bow shock with uniform upstream condil-
tions. In the case of uniform upstream conditions, only derivatives with
respect to Cu remain in equations (20), and these may be written, without
loss of generality, as

o = o (e1)

since the partial derivative implies that 6, 1is constant. However, all of
the terms in equations (20) must be retained for the present problem.

The last step needed to put the shock conditions into their desired form
is to introduce equation (17) into equations (20). The result (noting that
dop/dr = 0) is

_ s 2R 9%Pog  dp OPou 3p %ou _dp Vou , 90 %ou
Pig " %23 "M\ Br "3, or O, Or 3V, or ' 3o or
5] 9 o d
* <?1u gﬁ; * Py 55; + Viu gga - O1u §§> (22a)
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o =s dp R Ipog dp._ 9oy 9 dpou _ 9 Voy dp oy
1d 1 do N or dp, Or dp, Or v, or dog Or

o o o)
+ <p1u 8§;'+ Piu ap + Viy S%‘ = Oy 3 > (22b)

aeou

o . - o __R[aeod_ae Ovou 30 %ou 30 Vou (e 1> }
1d © 1 dg 1 or dp, Or dp, Or oV, Or dc or

) )
e o v o (20 (220)

Equations (22) are the desired generalizations of equations (10). They contain
additional terms which reflect the presence of vpstream gradients in the basic
zero incidence flow field, and upstream perturbations due to incidence. These
upstream influences are multiplied by weighting factors determined from the
shock equations. The weighting factors are the partial derivatives evaluated
in appendix A.

Shock conditions for the crossflow angle, ©;.- The condition on the cross-
flow angle is somewhat simpler due to the fact bthat ® = 0 everywhere for zero
incidence. The present derivation is therefore ba31cally the same as that
given in greater detail in reference 7. An additional term will appear, how-
ever, which is due to the crossflow angle perturbation upstream of the shock.

In terms of shock oriented coordinates, it is clear that
" 1
wid = qu (23)
This equation states that the wvelocity component tangent to the shock is
unchanged as required by the momentum equation. Use of equation (7) then
gives

n_o_ 2 (24)
d

The following equation, derived in reference 7 to transform ¢ from shock to
wind axes,

¢ = 1" - o1(cos 0y =~ cot g, sin GO) (25)
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may be applied to equation (24) with the result

v
®1d + o1(cos B8pg ~- cot oy sin eod) = vg% [®au + o1(cos Ooy - cot og sin O4y) ]

or
V. Vv,
B ou _ _ You _ . _You _.
P9 = <¥é€> Q1 clﬂicos Bod Vga-cos GO€> cot cd<51n 804 vga sin 60u>}
(26)

For the bow shock wave

P =0
and

6ou =0

so that equation (26) reduces to equation (11). However, for a shock embedded
in a nonuniform field, the more general expression (26) 1s needed.

Shock conditions at_ the corner.- The shock conditions derived above
depend linearly on the shock angular perturbation, ¢;, and the radial pertur-
bation, Ri. The calculation of these shock perturbation parameters for a
general shock point will be outlined in the next section. Their initial
values, at the surface of the body, are calculated in a different manner as

outlined in the present section.

Just as the shock conditions are most easily found with the use of shock
oriented coordinates, the present analysis is simplified by body axes. Vari-
ables expressed in body axes will be identified by a prime superscript. Refer-
ring to sketch (b), one has

. /pB - p A
p1t cos o' = éilél <—TO—

(27)

A. Position of corner for a=0
B. Position of corner for a>0

In terms of body axes, the surface
boundary condition is

(91')B =0 (28)

for both the upstream and downstream
flow-angle perturbations. Making use
of this condition, while differentiat-
ing the shock relations (egs. (18)),
Sketeh (b) one obtains

12



t
P8 s ot 5o P S Pl 3oy T By (292)
o) o) &) 3
p:'l.d = gt 'a—g + p;_u g&— + ;_U. Sp— + V;_U. ﬁ (29b)
ok 30 36 t 0
61d = 0 = o3 56+Piu5¥u—+p:{ugp—u‘+vmm (29¢)

The partial derivatives used here are those introduced in equations (20).
Equation (29c¢) gives the initial wvalue of the shock angular perturbation in
terms of body axes

-1 t 08 96 _ t 99
| J S t 0
01 89/80' <P1u apu lu ap Vlu avu> (3 )
The shock radial perturbation is, of course, zero when following the body

(Rit)g = O (31)

Equations (29a) and (29b) together with the equatlon of state (egs. (6)) yield
the Jjump condition for the entropy perturbation®

S1q = @—1;2 (5 > Pla (32)

which, in turn, defines the new value for the constant, K, in equation (9);
that is
K = 834 (33)

downstream of the corner.

Equations (29) to (33) complete the boundary conditions for the corner,
but they must be converted to wind axes to be consistent with the rest of the
analysis. This conversion has been discussed in detall in reference 7, and
only the results will be given here. These are:

1The condition, K = O in equation (9), implies a constant entropy on the
surface of a spherically tipped body at incidence. It is noteworthy that
behind a corner the entropy varies as cos &' in accordance with equation
(32). This is an example of a situation where a body at incidence dces not
have a constant entropy everywhere on its surface.

13
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Pl=pl'+(x—%)?;g-r§%\
p1=p1'+(X—R'b)g%‘“r§££> (34)
Vl=Vl'+(x-Rb)2%—r:%J
Ry = BRy' - Ry tan og - (x - Rp) (35)
o, =0,' -1 -Rp %%g (36)

The transformations for entropy and flow angle have already been given in
equations (8) and (9) above, and equation (26) for the crossflow angle applies
here also without change. The derivative, dao/dx, appearing in equation (36)
is related to the shock curvature at zerc incidence. It will not, in general,
be zero when the upstream conditions are nonuniform. The derivative of the
shock angle with respect to x can be obtained from the shock curvature which
is evaluated in appendix A.

This completes the specification of the perturbation shock conditions in
a nonuniform stream. The next section presents a brief description of how the
calculation of a typical shock point is performed.

Calculation Procedure

The equations and boundary conditions presented in the previous sections
can be used to calculate numerically the entire perturbation field on a charac-
teristic mesh evaluated for zero incidence. This calculation has been pro-
grammed in conjunction with the axisymmetric program described in reference 6.
After each point in the field is solved for o = O, the gradients of the axi-
symmetric field are evaluated, and the perturbation equations solved. The cal-
culation for smooth bodies is described in reference 7. 1In this section the
details of the embedded shock calculation are outlined.

Gradients of the o = 0 field.- The coefficients of the perturbation equa-
tions and the boundary conditions contain derivatives, or gradients, of the
zero incidence flow variables, Py, Pgs; 8o, Vo5 Sge These gradients play an
important part in the solution, and in the shock conditions in particular. For
a general field point, a simple, linear backward difference method is suffi-
ciently accurate to give good results. However, immediately behind a shock
wave, such methods are not satisfactory, in general. A method which makes use
of the shock curveture in conjunction with the equations of motion was there-
fore adopted and is described in appendix A.

1h



Corner point.- A typical charac-
teristic mesh in the vicinity of a
corner is shown in sketech (e¢). The
fictitious point C (later to be dis-
carded) is first calculated in the
usual way by neglecting the corner.
Conditions upstream of the shock at
point B' are then calculated by
linear interpolation between A-C, and
at point F' Dy interpolation along
D-E-C., Conditions at point B, down-
stream of the shock, are then obtained

by straightforward application of equa-
Sketch (c) tzons (29) to (36). The calculation of
conditions at point F 1is different from that for a general shock point since
the field downstream of the shock is unknown at this stage in the calculation.
An approximation to the shock angular perturbation, oy, at point F 1is
obtained if the corner boundary condition (eq. (28)) is assumed to apply there.
This assumes that dcl/dx is small, Downstream conditions at point F can
then be obtained with equations (29) to (36), and with corresponding upstream
conditions.

In the first attempts to perform the numerical calculations, the shock
angle at point F was assumed equal to the value on the body at point B.
This procedure, which neglects doo/dx, was used successfully in reference 6
for zero incidence flows, but it caused large errors in the present perturba-
tion solution. It was thus necessary to calculate the shock curvature at point
B, and meke use of this information to obtain a better approximation to the
shock angle, cp, at point F. The equations developed in appendix A were used
for this purpose.

General shock point.- A typical characteristic mesh for a general shock
point is shown in sketch (d). The fictitious point D is first calculated,
and upstream conditions at point C!
are obtained by linear interpolation
along DE. Conditions &t point A are
also obtained by interpolation using
points B and F (these are known from
the previous shock point or, initially,
from the corner point). One can now
apply equation (2&) along the 1 coor-
dinate from A to C, equation (12)
along the shock from B to C, and equa-
tions (22a) and (22c¢c) at point C.
These are written in finite difference
form as follows:

Sketch (4) a(p:® - p1®) + (0.C - 0:4) = (F - ¢)an
(37)

15



RiC = RyB + b(01B + 01C) (38)

3
piC = 010 g§ - RlC d+e (39)
810 = 0,C g—g -RiCf+g (%0)
where
s = Bo
PoVo®
b = % (x° - xB)sec® oo

and d, e, £, and g can be ldentified by comparing equations (39) and (40)
with equations (22a) and (22c). The four equations (37) to (40) in terms of
the unknowns ©pPiC, 9:C, 0:C, and RiC can be solved for o¢:C. All of the
remaining variables are then obtained by direct substitution. The procedure
is iterated, making use of average values for the coefficients, until conver-
gence of the pressure perturbation, plc, is obtained.

The inviscid theory developed in the preceding pages is an exact numerical
solution to the first-order angle-of-attack perturbation of the flow field;
that is, it yields the exact initial slope of the pressure and other flow vari-
ables. The largest angle of attack for which this linear approximation may be
applied depends, of course, on the degree of nonlinearity of the actual flow.
This nonlinearity can be assessed at present only by comparison with the proper
experiment. An experimental program suited to this purpose has been conducted
and will be described in the following section.

EXPERTMENT

In order to check the applicability of the perturbation theory, and to
provide basic pressure data, a test program was conducted with the models shown
in figure 2. A brief description of these tests follows.

Facllty and Test Procedure

The experimental study was conducted in the Ames 3.5-Foot Hypersonic Blow-
down Wind Tunnel at Mach numbers of 5.2, 7.4, and 10.5 and stagnation pres-
sures of 13.6, 102.0, and 122.5 atmospheres (200 1500, and 1800 psi), respec-
tively, and st a constant stagnation temperature of 1166 K. The corresponding
Reynolds numbers based on model length were approximately O. 9%10% at M = 5.2,
3.5%x10% at M = 7.4, and l.7><lO6 at M = lO 5. Data were taken at angles of
attack of approximately 0°, 59 , and 10° during an average total testing time
of approximately 1 minute. A more general description of the test facility
and its instrumentation is given in reference 1ll. A recent modification to
the facility permits the test models to be inserted into the test section only

16




during the period when steady flow exists. This innovation was used for the
present tests and greatly alleviates the effects of heating and stopping loads
on the test models and instrumentation.

Models and Apparatus

The models were constructed of stainless steel and consisted of two inter-
changeable noges, a cylindrical center section, and conical flare with a flare
angle of 16.5 . The nose shapes were a hemisphere and a 22—1/20 half-angle
cone. A photograph of the hemispherical-nose model is shown in figure 2(a)
while a dimensional sketch, along with other details of the test models, is
presented in figure 2(b). The technique used in constructing the flare proved
to be successful in bleeding off the boundary layer and, hence, in eliminating
flare-induced separation on the cylindrical portion of the body (see ref. 12).
It consisted of making the flare hollow and providing a gap between the flare
and body cylinder. A gap size of 5 percent of the diameter of the body cylin-
der was found to be suitable for the present tests. This gap size was slightly
in excess of the maximum boundary-layer thickness at the flare estimated for
the present models and test conditions. Preliminary tests were also made in
which the gap size was varied from about 3 to 6 percent to determine if the
pressures in the vicinity of the flare were affected. The results of these
tests showed that the magnitude of the body pressures was not affected as long
as the size of the flare gap was sufficiently large to prevent separation.
Visible surface films were used in these tests to verify that boundary-layer
separation had been eliminated with the chosen gap.

The models were provided with thirty-nine 1.07 mm (0,042 in.) diameter
pressure orifices distributed in two rows, 180° apart. Stainless-steel pres-
sure tubing, 1.59 mm 0.D. (0.0625 in,), was brazed into the walls of the
models and led out through the base of the flare. About 3 feet aft of the
flare, the stainless-steel tubing was joined to Viton high-temperature, flex-
ible tubing, 0.79 mm I.D. (0.0375 in.) and 3.18 mm 0.D. (0.125 in.), which led
to the pressure cells. The total length of pressure tubing was about L meters.
A table giving the location of the pressure orifices on the test models is
presented in figure 2(b).

Instrumentation and Accuracy of Results

The three ranges of strain-gage pressure cells employed in the tests were
0.3k, 0.68, and 3.4 atmospheres (5, 10, and 50 psi). The cells were chosen to
give maximum accuracy in measuring the pressures at a given model location for
each test condition. Also, the pressure which was anticipated to be lowest
was monitored on an oscillograph, and the data were recorded when this pressure
stabilized. The precision of the final experimental data in coefficient form
depends upon the accuracy in measuring the free-stream and orifice pressures
and cn the uncertainty in determining the free-stream dynamic pressure. The
estimated over-all error in the pressure coefficient due to these uncertain-
ties is #0.007. The maximum estimated error in angle of attack, including
possible -variations in free-stream angularity, was *0.3C.
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RESULTS AND DISCUSSION

Surface Pressures and Shock Shapes

The experimental results for body surface pressures in coefficient form
are presented in figures 3 and L4 for the hemispherical- and conical-nose
models, respectively. Results for the hemispherical-nose model are glven for
Mach numbers of 5.2, 7.4, and 10.5 and at angles of attack of 0o° R 5 , and 10° 3
while the results for the conlcal-nose model are given for Mach numbers of 5.2
and 7.4 and angles of attack of 0° ana 5.

Numerical calculations for the surface pressures on the spherical-nose
model are also shown in figure 3. Theory and experiment are in agreement for
a=0°, but differ, especially on the flare, for other angles of attack. The
probable cause of this difference is discussed in the following paragraph.
Since perturbation theory has not yet been developed for the expansion corner
on the conical-nose model, the numerical results in figure L are only for
a =00, and agreement with experiment is excellent. In figure 5 calculated
shock shapes are compared with experimental results from shadowgraph pictures
for the blunt-nose model at a Mach number of T7.L. As the model is pitched to
angles of attack of 5 and 10°, the bow shock remains unchanged relative to
V,, while the flare shock must move with the body. The flare shock also moves
relative to the body, becoming closer to the body on the windward side and
farther removed on the leeward side. The calculated shock shapes on the lee-
ward side and for a = 0° agree well with experiment. On the windward side
the experimental shock is somewhat steeper and farther from the body than the
calculated result.

Circumferential pressure distribution.- The comparison between theoretical
and experimental flare pressures for the spherical-nose model at 1n01dence
(fig. 3) is not particularly good, even for 50 angle of attack. At 10° angle
of attack the experimental pressure is considerably higher than predicted by
the theory. On the other hand, the agreegent on the spherical nose and on the
forward section of the cylinder at o = 5 1s very good. The reason for the
disagreement between theory and experiment on the rearward portion of the body
was studied in some detail and is attributed to the increased importance of
second order (a®) terms neglected in the theory.

In order to illustrate thils point, one must look at the second-order term
in the expansion of the pressure. The series expansion in o and ¢ has the
general form (see, e.g., ref. 13)

D = Py + ap1 cos & + af(pe + ps cos 20) + 0(a®) (L1a)
or
P =P, + ap1 cos @ + a®[(pz - p3) + 2pz cos® @] + 0(a®) (41p)
Thus if the pressure is plotted as a function of cos ©® = z, the second-order
effect would appear as a displacement of the ordinate at 2z = 0 by az(pz-pg),

and by a curvature (0°p/dz®) of La®ps. To determine if important second-order
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effects were present in the data, additional tests were made with pressure
orifices located in various @ ©planes. These data are plotted versus cos @
in figure 6 for several x stations ahead of the flare; figure 6(a) is for

a = 5° and figure 6(b) for o = 10 . Shown also are the linear pressure dis-
tributions predicted by the theory. For 50 angle of attack the experimental
variation is reasonably linear, although f8r x/d = 2.29 there 1s a tendency
toward a nonlinear wvariation. For o = 10, the first station (x/d = 0.45),
which is on the sphere, shows a slightly nonlinear variation, and at rearward
stations the experimental pressure distribution is increasingly nonlinear.
There is a positive curvature to the pressure distribution at cos ¢ = O which
can be attributed to the term o®psz in equation (L1b). In figure 7 similar
data are shown for the flare pressures which also show this second-order effect,
becoming very pronounced at o = 10°. On the flare these effects are amplified
by the pressure rise across the shock.

The discrepancy between theory and experiment is serious when detailed
pressure distributions are desired. A need for more exact calculations, or
estimates of the second-order term is clearly indicated. However, the linear
theory may still be useful for predicting normal forces and moments at angles
of attack much larger than that indicated by the comparisons with pressure
data. The reason is that when equations (hl)are‘used for the integration of
normal forces with respect to @, the second-order term is identically zero.
Any nonlinearity in Cy and Cm_(outside of viscous effects) must therefore be
third order in «. These force coefficients and the center of pressure for the
blunt-nose model are discussed next.

Force Coefficients and Center of Pressure

Integration of experimental pressures.- In order to evaluate the forces
on the model at angle of attack it is, in general, necessary to integrate both
in the circumferential and the longitudinal directions. For small angles of
attack the circumferential pressure distribution has a cosine variation, and
can therefore be integrated exactly. However, for the angles of attack of the
present tests, 1t was found that the pressures deviate from the cosine curve.
Nevertheless, by means of arguments given in the previous paragraph and illus-
trated in figures 6 and T, it is seen that the devistion is in the same direc-
tion, and nearly equal, on the windward and leeward sides. In the case of the
normal force and pitching moment, the additions to the cosine variation on
windward and leeward sides of the body cancel. Therefore the experimental
pressures in the plane of symmetry were used in conjunction with a cosine cir-
cumferential distribution to calculate the forces and moments. A cosine dis-
tribution was also assumed in calculating the axial force, even though the
second-order effects on opposite sides of the body do not cancel in this case.
As a result, the experimental data for Cp should be slightly high at angle
of attack. The error, however, is believed to be small since it occurs prima-
rily on the flare which accounts for less than 10 percent of the total axial
force at the test Mach numbers. Experimental data for the slope of the normal-
force coefficient and the center of pressure at a = 0° were calculated with
the 5° angle-of -attack data.

19



Comparison with theory.- Aerodynamic coefficients obtained by integrating
the experimental pressure distributions for the spherically blunted model are
presented in figures 8 and 9. Figure 8 shows the effect of angle of attack
for Me = 7.4, and figure 9 shows the variation with Mach number for o = 0° .
Experimental results for the normal-force coefficient, axial-force coefficient,
and center of pressure are compared with the present theory and with the theo-
ries of references 2 and 3. The latter methods make use of a combination of
simple theories. Jorgensen (ref. 2) assumes a linear pressure variation on
the cylinder and applies cone theory to the flare. Seiff (ref. 3) makes use of
blast-wave theory on the cylinder and Newtonian theory on the flare. Both of
these methods as well as the present numerical results account for the nose
contribution by means of modified Newtonilan impact theory.

In comparing results for varying angle of attack (fig. 8), one should note
that the theories shown give only linear estimates. On the other hand, the
experimental results exhibit the actual nonlinear nature of the aerocdynamic
parameters shown. This effect can be observed in the normal—gorce, axial-force,
and center-of -pressure data which are all slightly high at 10~ angle of attack
relative to linear extrgpolations of the lower angle data. Such trends are
expected; however, attention 1s called to the previous section where reasons
were given for expecting the experimental value for C, to be slightly high.

For 50 angle of attack the experimental data are in best over-all agree-
ment with the present numerical calculations. All the theories give essen-
tially the same axial force, but there are sizable differences in normal force
and center of pressure. The method of Jorgensen (ref. 2) predicts normal-force
and center-of -pressure values about 10 percent higher than the present method;
Seiff's method (ref. 3) overpredicts the normal force by about 30 percent but
gives the same center of pressure as the present method. However, the latter
agreement is only for a Mach number of 7.4, as can be seen in figure 9.

The comparisons at other Mach numbers between experiment and the various
theories are shown in figure 9. Again good agreement is evidenced for the
axial-force coefficient, owing mainly to the fact that the nose is the main
contributor to this force. The present method gives the best agreement with
experimental normal-force slopes, (CNd)@_o’ and the estimates of reference 3

are consistently high, while those of reference 2 tend to be slightly high at
lower Mach numbers. With regard to the center of pressure, (ch/d)@:OJ the
situation is somewhat reversed. Seilff's method gives the best over-all agree-
ment with the experimental center of pressure, while Jorgensen's method pre-
dicts a curve nearly parallel to the data but about 8 percent too high. The
present method predicts a greater forward shift of center of pressure with
increasing Mach number than that indicated by experiment.

As a consequence of overestimating the normal force, the method of ref-
erence 3 also overpredicts the pitching moment. This result was observed in
comparisons with data obtained from free-flight tests which were reported in
references 4 and 14. The moment-curve slopes obtained from these free-flight
tests decrease more rapidly, with increasing Mach number, than the predictions
of Seiff's theory (see ref. 14). This trend is in general agreement with the
center-of -pressure curve obtained from the present numerical results, but not
with the trend of present experimental data, which shows nearly the same center
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of pressure at Mach numbers of 7.4 and 10.5. In view of this difference
between present numerical calculations and experiment, additional data at
higher Mach numbers are needed to verify the predicted shift of the center of
pressure.

CONCLUDING REMARKS

The present study was undertaken to provide a better understanding of the
inviscid flow over flared bodies at angle of attack. Pressure distributions on
flared models, with hemispherical and conical noses, were measured at Mach num-
bers of 5.2, 7.4, and 10.5. The flares on these models were provided with a
means for boundary-layer removal in order to eliminate the large separated-flow
region which would have been produced by the flare shock. The experimental
pressure distributions therefore correspond to an idealized flow in which
large-scale viscous effects have been suppressed. With the nature of the
inviscid flow field thus established, the task of understanding flows compli-
cated by viscous effects (which is the usual case) should be simplified.

A linearized perturbation method was developed for the numerical calcula-
tion of the flare shock conditions for small angles of attack, and the result-
ing equations were incorporated into a computer program based on the linear-
ized characteristics method. While this method can be regarded as being exact
for sufficiently small angles of attack, comparison with the experimental
pressure distributions showed significant deviations on the flare even for 5
angle of attack. Since the experimental results were free of the effects of
viscous separation, it was possible to show that the difference between theory
and experiment was probably due to second-order (ag) terms neglected in the
present method. These second-order effects cause the circumferential pressure
variation to depart from the cosine curve assumed in the perturbation theory.
However, the departure from a cosine variation is an even function (i.e.,
cos® @) and therefore does not produce a cross force. (This is in contrast to
the second-order effects studied in ref. 15, which are caused by viscosity and
which result in a cross force.)

The mutual cancellation of pressures on windward and leeward surfaces
thus results in normal forces and pitching moments which are more linear with
o than would be anticipated from a knowledge of pressure distributions only
in the plane of symmetry. The present theory was therefore useful for esti-
mating the normal-force curve and the center of pressure for angles of attack
of about 5°. Comparisons were made with more approximate theories, which are
also linearized with respect to angle of attack. The present method was in
best over-all agreement with the experimental results, but it predicted a
greater decrease in stability with increasing Mach number than was measured
experimentally.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 6, 1965
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APPENDIX A

EVALUATION OF SHOCK DERIVATIVES AND FLOW GRADIENTS

BEHIND A SHOCK

Calculation of the perturbation flow over a body at incidence requires the
knowledge of gradients of the zero incidence field. Evaluation of the field
gradients immediately behind a shock wave is accomplished with the use of the
equations of motion in conjunction with certain partial derivatives which were
introduced in the shock boundary conditions. These partial derivatives
describe the Jdownstream influence of unit changes in the shock angle and condi-
tions upstream of the shock. The calculation of the shock derivatives from
the obligue shock equations is first described. The equations for flow-field
gradients are then derived and thelr application to the calculation of the
shock-wave curvature is illustrated.

SHOCK-WAVE DERIVATIVES

It is convenient to use index notation where 15 are the unknown condi-
tions downstream of the shock wave, and gy are the known upstream conditions.
Then the shock equations which determine the downstream conditions may be writ-
ten symbolically as (cf. egs. (18))

£y = fi(g1,82,83,84) (A1)
In particular, the variables are identified as

and
PusogsVysby  for k = 1=k

fl

8k

where
gu =0 - 0y

Differentiating (Al) with respect to o, as in equations (20), gives

4
Dfy afi Dgyx

Do agk Da
k=1

(a2)

where the tensor Of3/dgx consists of the 4 x 3 matrix
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op op op op
dp, Opy OVy Oy

Bfi dp ap ap ap (A3)
dgx Opy Opy OVy Oty

0 o6 o9 36
dpy  Opy OVy Oy

which can be evaluated from equation (Al). For a perfect gas, the shock
equations given in reference 16 are used to obtain explicit relations for the
elements of (A3). These are listed below:

27/(7 + 1)

dp 2 sin® ¢ (45)

- V“>( ) ]
y + 1 Y oy u2 sin® o
<? + l> Oy V- u
08

—— = -sin® 9 tan o (a6)
8pu o V. 2
< 3p§ gin? g - %)
dp 2V,® sin® o
Sow © 7 FL (a7)
) =)
dp 7 + 1 Yy o+ l pu 51n2 o y + 1 puVu2 51n2 o
. ' (a8)

o G- <m> -

PyV u
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y + 1N\ Vi
2y Py

2
PuVu” >
sin© ¢ - 1
YPu

sin® 9 tan o

(“)
7+ u 51n2 U ]

99 _

oty

" do sin o cos ¢

o L
52 =3 iul Vu sin ¢ cos @
o

-

sin g cos ¢

k&

2pg | cot o -

%o .2 < 2y > pU.
sin ¢ + =
y - Py

d8. 1 sin(o - 9)cos(c - ) . bypy cos®(o - 9)

(y + l)puVﬁz sin® ¢

(A9)

(A10)

(A11)

(a12)

(A13)

(ALk)

(a15)

For a real gas in equilibrium, the shock conditions are implicit (i.e.,
they must be obtained by iteration), therefore the derivatives above must be

evaluated numerically.

Although the results of flow-field calculations pre-

sented herein are for thermally perfect air, it is instructive to compare equa-
tions (AL) to (Al2) with the results of numerical calculations for dissociated
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air. This comparison is made in figure 10 as a function of the upstream veloc-
ity normal to the shock. The gas properties used in the calculations were
obtained from curve fits to equilibrium thermodynamic properties generated in
the manner described in reference 17.

Gradients of the Zero Incidence Flow Field

" The derivatives of flow variables along streamlines and normal to the
streamlines play an important part in the calculation of the perturbation flow
field. For the usual mesh point, a simple linear backward difference method
is used for evaluating these derivatives. This method is not well suited,
however, for calculating the downstream gradients along the bow shock, and
especially along an embedded shock. For these cases, a more accurate method
is used which makes use of the differential equations of motion directly.
These are written in terms of streamline coordinates (see, e.g., Hayes and
Probstein, ref. 18)

ﬁ dp 0 sin @

pvg&':—g-e—r* (Al6)
19 _ _ %
EGE-Bn Os (a17)

where € = 0 for two-dimensional flow

€ = 1 for axisymmetric three-dimensional flow

and s, n are distances along and normal to the streamline. The vector
gradients of p and 8 along the shock wave may be written in terms of com-
ponents along the s, n coordinates in the following way (see sketch (e))

w op _ op ., 9p
S - cos € S5 + sin ¢ S (a18)
R 20 08

Sy = cos ¢ S + sin ¢ Sh (A19)

Equations (A16) to (Al9) contain four
unknown dérivatives of p and 6 with
respect to s and n in terms of
gradients along the shock. Substitu-
tion yields the following expressions
for the streamline pressure gradient
and the streamline curvature:

Streamline

Sketch (e)
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= sin 9 sin ¢
5 <§ > cos £ + pV* sin € <§W >

55 - AV (a20)
cos® € B= sin Q
-Ef-é— sin £ + cos € %0 sin 6 sin C)
2 JW oW
0. T R (a21)

ds cos® t - B2 sin® C

The remaining derivatives can then be found from equations (A16) and (A17).
The entropy gradient can also be expressed in terms of the gradient along the
shock. In this case, since the entropy is constant on streamlines, one
obtains

as 1 as
dn = sin § aw (A22)

Equations (A20) and (A21) require derivatives of p, 6, and p along the
shock wave, evaluated on the downstream side. These can be obtained in terms
of the upstream gradients, which are presumed known, by means of the shock
derivatives (A3); that is

d S

P p_ %8k

S - Z % S (A23)
k=1 ’
4

00 _ do_ %8k

i Z S oW (A2k)
k=1

where the derivatives ng/aw are determined from the upstream gradients.

Equation (A23) contains the shock curvature, Oo/oW, which enters through
the derivative of ({y

obu 3o _ 98y

oW OW W

For a general shock point the shock curvature is found by a linear difference.
Near a corner, however, this quantity is evaluated differently as described

next.
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Shock-Wave Curvature

When a nonuniform supersonic stream flows over a compression corner, the
initial shock angle at the corner is equal to the two-dimensional obligque
shock value, and the shock will have a finite curvature even though the body
may be straight. On the other hand, a curved body will produce a curved shock
in a uniform stream. The latter problem has been considered by a number of
authors (see, e.g., ref. 19). In either case, the initial shock curvature can
be evaluated from the equations given in this appendix. The shock curvature
depends on the streamline curvature downstream of the shock which is determined
from a knowledge of the body shape. Equations (A23) and (AEA) can be used in
conjunction with equation (A21) for the streamline curvature in evaluating the
shock-wave curvature. First, however, it will be convenient to rewrite equa-
tions (A23) and (A24) in the form

op dp
S7 = Kp + 5o Ky (a25)
08 _ o6
a—w' = K@ -+ S KW (A26)

where

_ 9 %y 9p dpy  Op Wy _ 3p doy
P "3, W T 3o, W 3V, W  do ow

Ka - de 9Pu L, 8 dpou. N dg Vy (%8 _ N éﬁg
© 7 dp, W Sp,, W OV, W dg W
and where
Ky = %%

is the shock-wave curvature. The terms Kp and Ky represent the gradients
along a straight shock wave, and the remaining term represents the gradient
due to shock curvature. Substitution of equations (A25) and (A26) into (A21)
yields, after some rearranging

2
KB(C052 ¢ - BZ sin® C) - COS8 g[(%r—g‘> Kp tan € + Ko + %‘ sin 6 sin Q:l

Ky = -
Eig QE sin € + %0 cos
oV do do (Ag7)
where
)
KB=5—2
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is the body surface curvature behind the shock. This expression depends on
the body curvature, on the flow-field gradients upstream of the shock, and on
the derivatives of the shock-wave equations. These conditions are known from
the solution of the flow upstream of the corner. The initial shock curvature
for a two-dimensionsl or axisymmetric flare in a nonuniform stream is there-

fore determined.
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(a) Photograph of hemispherical-nose model mounted in 3.5-foot HWT test section.

Figure 2.- Wind-tunnel models.
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